Step 1: Write the balanced redox reaction in acidic medium.
In acidic medium, KMnO$_4$ acts as a strong oxidizing agent and gets reduced as:
\[
\text{MnO}_4^- \rightarrow \text{Mn}^{2+}
\]
This involves a gain of 5 electrons.
On the other hand, oxalate ion (C$_2$O$_4^{2-}$) gets oxidized to carbon dioxide:
\[
\text{C}_2\text{O}_4^{2-} \rightarrow 2\text{CO}_2
\]
This involves a loss of 2 electrons.
Step 2: Balance the electrons transferred.
To equalize the electron exchange, we use LCM of 5 and 2 = 10 electrons.
\[
\text{5 MnO}_4^- + 16H^+ + 10e^- \rightarrow 5Mn^{2+} + 8H_2O
\]
\[
\text{2 C}_2\text{O}_4^{2-} \rightarrow 4CO_2 + 4e^-
\]
To balance the electrons:
\[
\text{5 MnO}_4^- \text{ reacts with } \text{2 C}_2\text{O}_4^{2-}
\]
Step 3: Calculate moles required.
From the balanced reaction:
\[
2 \text{MnO}_4^- + 5 \text{C}_2\text{O}_4^{2-} + 16 H^+ \rightarrow 2 Mn^{2+} + 10 CO_2 + 8 H_2O
\]
This means:
\[
\text{2 mol KMnO}_4 \text{ reacts with 5 mol oxalate}
\]
So, for 1 mol of oxalate, KMnO$_4$ needed is:
\[
\frac{2}{5} \text{ mol}
\]
Thus, the required number of moles of KMnO$_4$ = $\dfrac{2}{5}$ mol.