The correct answer is: 64
\(=\frac{1.4×2×12.5}{0.55}=63.63\%≃64\)
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

The three structural formulas – complete structure, condensed structure, and bond line structural formulas are explained below:
The Lewis dot structure is considered as the complete structural formula. In Lewis structure, the covalent bonds in the compound are denoted by a dash (―). This helps to emphasize the number of bonds formed by the electrons. Every single bond, a double bond, and a triple bond are represented by one dash, double dash, and triple dash respectively. It illustrates every single bond formed between every atom in the compound, thus called complete structural formula.
Since complete structural formula consumes much time and space to represent the structure, we can condense them. This is the condensed structural formula, where replacing some dashes/bonds by a number of identical groups attached to an atom by a subscript.
A bond lines structural formula is another way of structural representation of organic compounds. Here, every bond is represented as a line in a zigzag manner. If not specified, every terminal is assumed to be a methyl (-CH3) group.