Question:

A flask contains 98 mg of H₂SO₄. If \( 3.01 \times 10^{20} \) molecules of H₂SO₄ are removed from the flask, the number of moles of H₂SO₄ remaining in the flask is (\( N = 6.02 \times 10^{23} \)):

Show Hint

To find remaining moles, subtract removed moles from initial moles using Avogadro’s number.
Updated On: Mar 24, 2025
  • \( 1 \times 10^{-4} \)
  • \( 5 \times 10^{-4} \)
  • \( 1.66 \times 10^{-3} \)
  • \( 9.95 \times 10^{-3} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Compute Initial Moles of H₂SO₄ \[ {Moles of H₂SO₄} = \frac{{Mass}}{{Molar mass}} = \frac{98 \times 10^{-3}}{98} = 10^{-3} { moles} \] Step 2: Convert Removed Molecules to Moles \[ {Moles removed} = \frac{3.01 \times 10^{20}}{6.02 \times 10^{23}} \] \[ = 5 \times 10^{-4} { moles} \] Step 3: Compute Remaining Moles \[ {Remaining moles} = (10^{-3} - 5 \times 10^{-4}) \] \[ = 5 \times 10^{-4} { moles} \] Thus, the correct answer is \( 5 \times 10^{-4} \).
Was this answer helpful?
0
0