Given:
Average number of accidents per month, \(\lambda = 4\).
Using the Poisson distribution formula:
\(P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}\)
For \(P(X \lt 4)\):
\(P(X \lt 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)\)
Calculate each probability:
\(P(X = 0) = \frac{e^{-4} \cdot 4^0}{0!} = e^{-4}\)
\(P(X = 1) = \frac{e^{-4} \cdot 4^1}{1!} = 4 \cdot e^{-4}\)
\(P(X = 2) = \frac{e^{-4} \cdot 4^2}{2!} = 8 \cdot e^{-4}\)
\(P(X = 3) = \frac{e^{-4} \cdot 4^3}{3!} = \frac{32 \cdot e^{-4}}{3}\)
Now sum these probabilities:
\(P(X \lt 4) = e^{-4} + 4 \cdot e^{-4} + 8 \cdot e^{-4} + \frac{32 \cdot e^{-4}}{3}\)
Calculate \(e^{-4}\):
\(e^{-4} \approx 0.0183\)
Now compute \(P(X \lt 4)\):
\(P(X \lt 4) = 0.0183 + 4 \cdot 0.0183 + 8 \cdot 0.0183 + \frac{32 \cdot 0.0183}{3}\)
\(P(X \lt 4) = 0.0183 + 0.0732 + 0.1464 + 0.1952\)
\(P(X \lt 4) = 0.4331\)
So, the correct option is (B) \(0.433\).
Match List-I with List-II
List-I | List-II |
---|---|
(A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
(B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
(C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
(D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
Match List-I with List-II
List-I | List-II |
---|---|
(A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
(B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
(C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
(D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below: