Given:
Average number of accidents per month, \(\lambda = 4\).
Using the Poisson distribution formula:
\(P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}\)
For \(P(X \lt 4)\):
\(P(X \lt 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)\)
Calculate each probability:
\(P(X = 0) = \frac{e^{-4} \cdot 4^0}{0!} = e^{-4}\)
\(P(X = 1) = \frac{e^{-4} \cdot 4^1}{1!} = 4 \cdot e^{-4}\)
\(P(X = 2) = \frac{e^{-4} \cdot 4^2}{2!} = 8 \cdot e^{-4}\)
\(P(X = 3) = \frac{e^{-4} \cdot 4^3}{3!} = \frac{32 \cdot e^{-4}}{3}\)
Now sum these probabilities:
\(P(X \lt 4) = e^{-4} + 4 \cdot e^{-4} + 8 \cdot e^{-4} + \frac{32 \cdot e^{-4}}{3}\)
Calculate \(e^{-4}\):
\(e^{-4} \approx 0.0183\)
Now compute \(P(X \lt 4)\):
\(P(X \lt 4) = 0.0183 + 4 \cdot 0.0183 + 8 \cdot 0.0183 + \frac{32 \cdot 0.0183}{3}\)
\(P(X \lt 4) = 0.0183 + 0.0732 + 0.1464 + 0.1952\)
\(P(X \lt 4) = 0.4331\)
So, the correct option is (B) \(0.433\).
Let $\alpha,\beta\in\mathbb{R}$ be such that the function \[ f(x)= \begin{cases} 2\alpha(x^2-2)+2\beta x, & x<1 \\ (\alpha+3)x+(\alpha-\beta), & x\ge1 \end{cases} \] is differentiable at all $x\in\mathbb{R}$. Then $34(\alpha+\beta)$ is equal to}
Which part of root absorb mineral?