Assertion (A): The shaded portion of the graph represents the feasible region for the given Linear Programming Problem (LPP).
Reason (R): The region representing \( Z = 50x + 70y \) such that \( Z < 380 \) does not have any point common with the feasible region.
For a Linear Programming Problem, find min \( Z = 5x + 3y \) (where \( Z \) is the objective function) for the feasible region shaded in the given figure. 

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?
