Is * defined on the set {1,2,3,4,5} by a*b=L.C.M. of a and b a binary operation? Justify your answer.
The operation * on the set A = {1, 2, 3, 4, 5} is defined as
a * b = L.C.M. of a and b.
Then, the operation table for the given operation * can be given as:
| * | 1 | 2 | 3 | 4 | 5 |
| 1 | 1 | 2 | 3 | 4 | 5 |
| 2 | 2 | 2 | 6 | 4 | 10 |
| 3 | 3 | 6 | 3 | 12 | 15 |
| 4 | 4 | 4 | 12 | 4 | 20 |
| 5 | 5 | 10 | 15 | 20 | 5 |
It can be observed from the obtained table that:
3 * 2 = 2 * 3 = 6 ∉ A, 5 * 2 = 2 * 5 = 10 ∉ A, 3 * 4 = 4 * 3 = 12 ∉ A
3 * 5 = 5 * 3 = 15 ∉ A, 4 * 5 = 5 * 4 = 20 ∉ A
Hence, the given operation * is not a binary operation.
Let \( A = \{0,1,2,\ldots,9\} \). Let \( R \) be a relation on \( A \) defined by \((x,y) \in R\) if and only if \( |x - y| \) is a multiple of \(3\). Given below are two statements:
Statement I: \( n(R) = 36 \).
Statement II: \( R \) is an equivalence relation.
In the light of the above statements, choose the correct answer from the options given below.
A binary operation can be understood as a function f (x, y) that applies to two elements of the same set S, such that the result will also be an element of the set S. Examples of binary operations are the addition of integers, multiplication of whole numbers, etc. A binary operation is a rule that is applied on two elements of a set and the resultant element also belongs to the same set.
Read More: Truth Table
There are four main types of binary operations which are: