Rewrite \(\sin^3 x\) as:
\[
\sin^3 x = \sin x \cdot \sin^2 x = \sin x (1 - \cos^2 x).
\]
So,
\[
\int \sin^3 x \, dx = \int \sin x (1 - \cos^2 x) \, dx = \int \sin x \, dx - \int \sin x \cos^2 x \, dx.
\]
Let \(t = \cos x \implies dt = -\sin x \, dx\).
Then,
\[
\int \sin x \cos^2 x \, dx = -\int t^2 \, dt = -\frac{t^3}{3} + C = -\frac{\cos^3 x}{3} + C.
\]
Also,
\[
\int \sin x \, dx = -\cos x + C.
\]
Therefore,
\[
\int \sin^3 x \, dx = -\cos x + \frac{\cos^3 x}{3} + C.
\]
Final answer:
\[
\boxed{
\int \sin^3 x \, dx = -\cos x + \frac{\cos^3 x}{3} + C.
}
\]