Rationalize the denominator:
\[
\frac{1}{\sqrt{x+1} + \sqrt{x+2}} = \frac{\sqrt{x+2} - \sqrt{x+1}}{(\sqrt{x+2} + \sqrt{x+1})(\sqrt{x+2} - \sqrt{x+1})} = \frac{\sqrt{x+2} - \sqrt{x+1}}{(x+2) - (x+1)} = \sqrt{x+2} - \sqrt{x+1}.
\]
So the integral becomes:
\[
\int \frac{dx}{\sqrt{x+1} + \sqrt{x+2}} = \int \left(\sqrt{x+2} - \sqrt{x+1}\right) dx = \int \sqrt{x+2} \, dx - \int \sqrt{x+1} \, dx.
\]
Integrate each term separately:
\[
\int \sqrt{x+a} \, dx = \frac{2}{3} (x+a)^{3/2} + C.
\]
Therefore,
\[
\int \sqrt{x+2} \, dx = \frac{2}{3} (x+2)^{3/2} + C_1,
\]
and
\[
\int \sqrt{x+1} \, dx = \frac{2}{3} (x+1)^{3/2} + C_2.
\]
Hence,
\[
\int \frac{dx}{\sqrt{x+1} + \sqrt{x+2}} = \frac{2}{3} (x+2)^{3/2} - \frac{2}{3} (x+1)^{3/2} + C.
\]
Final answer:
\[
\boxed{
\int \frac{dx}{\sqrt{x+1} + \sqrt{x+2}} = \frac{2}{3} \left[(x+2)^{3/2} - (x+1)^{3/2}\right] + C.
}
\]