Question:

\( \int \frac{x}{(1-x^2)\sqrt{2 - x^2} dx = \)}

Show Hint

Use trigonometric substitution when square roots of quadratic expressions appear in integrals.
Updated On: Jun 4, 2025
  • \( \log \left| \frac{\sqrt{2 - x^2} + 1}{\sqrt{2 - x^2} - 1} \right| + c \)
  • \( \frac{1}{2} \log \left| \frac{2 - x^2}{1 - x^2} \right| + c \)
  • \( \frac{1}{2} \log \left| \frac{1 + \sqrt{2 - x^2}}{1 - \sqrt{2 - x^2}} \right| + c \)
  • \( \log \left| \frac{1 - x^2}{\sqrt{2 - x^2}} \right| + c \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Let \( I = \int \frac{x}{(1-x^2)\sqrt{2 - x^2}} dx \). Use substitution \( x = \sqrt{2} \sin \theta \Rightarrow dx = \sqrt{2} \cos \theta d\theta \). The expression simplifies using trigonometric identities leading to the standard result.
Was this answer helpful?
0
0