We are given the integral:
\[
I = \int \frac{dx}{x^2 + 4}
\]
This is a standard integral of the form \( \int \frac{dx}{x^2 + a^2} \), which can be solved using the formula:
\[
\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + C
\]
In this case, \( a = 2 \), so the solution becomes:
\[
I = \frac{1}{2} \tan^{-1} \frac{x}{2} + C
\]
Thus, the answer is \( \frac{1}{2} \tan^{-1} \frac{x}{2} + k \).