To evaluate the transformation, let \( u = a + b - x \).
Then: \[ \frac{du}{dx} = -1 \quad \text{or} \quad dx = -du. \] When \( x = a \), \( u = b \); and when \( x = b \), \( u = a \).
The integral becomes: \[ \int_a^b f(x) \, dx = \int_b^a f(a + b - u) (-du). \]
Reversing the limits of integration, the negative sign is removed: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx. \]
Let \( f(x) = \log x \) and \[ g(x) = \frac{x^4 - 2x^3 + 3x^2 - 2x + 2}{2x^2 - 2x + 1} \] Then the domain of \( f \circ g \) is: