To evaluate the transformation, let \( u = a + b - x \).
Then: \[ \frac{du}{dx} = -1 \quad \text{or} \quad dx = -du. \] When \( x = a \), \( u = b \); and when \( x = b \), \( u = a \).
The integral becomes: \[ \int_a^b f(x) \, dx = \int_b^a f(a + b - u) (-du). \]
Reversing the limits of integration, the negative sign is removed: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx. \]
If the domain of the function \[ f(x)=\log\left(10x^2-17x+7\right)\left(18x^2-11x+1\right) \] is $(-\infty,a)\cup(b,c)\cup(d,\infty)-\{e\}$, then $90(a+b+c+d+e)$ equals
