We are given:
\[
I = \int_0^a \frac{x}{\sqrt{a^2 - x^2}} \, dx
\]
This is a standard integral. Let’s use the substitution \( x = a \sin \theta \), hence \( dx = a \cos \theta \, d\theta \), and \( \sqrt{a^2 - x^2} = a \cos \theta \).
Now, substitute into the integral:
\[
I = \int_0^{\frac{\pi}{2}} \frac{a \sin \theta}{a \cos \theta} a \cos \theta \, d\theta = a \int_0^{\frac{\pi}{2}} \sin \theta \, d\theta
\]
The integral of \( \sin \theta \) is \( -\cos \theta \), so:
\[
I = a \left[ -\cos \theta \right]_0^{\frac{\pi}{2}} = a(0 - (-1)) = a
\]
Thus, the correct answer is \( \frac{a}{2} \).