Given:
In Young's double slit experiment, the maximum intensity \( I_{\text{max}} = 4 \times I_{\text{min}} \)
Let the individual intensities of the two waves be:
\( I_1 \) and \( I_2 \)
Then, we use the formulas:
\[ I_{\text{max}} = (\sqrt{I_1} + \sqrt{I_2})^2 \] \[ I_{\text{min}} = (\sqrt{I_1} - \sqrt{I_2})^2 \]
Given: \[ \frac{I_{\text{max}}}{I_{\text{min}}} = \frac{(\sqrt{I_1} + \sqrt{I_2})^2}{(\sqrt{I_1} - \sqrt{I_2})^2} = 4 \]
Taking square root on both sides: \[ \frac{\sqrt{I_1} + \sqrt{I_2}}{\sqrt{I_1} - \sqrt{I_2}} = 2 \]
Cross-multiplying: \[ \sqrt{I_1} + \sqrt{I_2} = 2(\sqrt{I_1} - \sqrt{I_2}) \] \[ \sqrt{I_1} + \sqrt{I_2} = 2\sqrt{I_1} - 2\sqrt{I_2} \] \[ 3\sqrt{I_2} = \sqrt{I_1} \]
Squaring both sides: \[ I_1 = 9 I_2 \]
So, the ratio of intensities: \[ \frac{I_2}{I_1} = \frac{1}{9} \] Answer: 1/9
In Young's double-slit experiment, the slits are separated by 0.28 mm, and the screen is placed 1.4 m away. The distance between the central bright fringe and the fourth bright fringe is measured to be 12 cm. Then, the wavelength of light used in the experiment is …….