Step 1: Using the sine rule
We use the sine rule in a triangle:
\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R.
\]
Step 2: Expressing the given terms
We rewrite:
\[
a^2 \sin 2B + b^2 \sin 2A.
\]
Using \( \sin 2\theta = 2 \sin \theta \cos \theta \), we get:
\[
a^2 (2 \sin B \cos B) + b^2 (2 \sin A \cos A).
\]
Step 3: Simplifying
Using trigonometric identities and law of sines, we derive:
\[
2ab \sin C.
\]