Given \(a, b, c\) are in arithmetic progression, so:
\[
b = \frac{a + c}{2}
\]
Also given: \(\angle C = 2\angle A\)
Use sine rule:
\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
\Rightarrow \frac{a}{\sin A} = \frac{c}{\sin 2A} = \frac{c}{2 \sin A \cos A}
\]
So:
\[
\frac{a}{\sin A} = \frac{c}{2 \sin A \cos A} \Rightarrow a = \frac{c}{2 \cos A}
\Rightarrow \cos A = \frac{c}{2a}
\]
Now use identity:
\[
b = \frac{a + c}{2} \quad \text{and from sine rule: } \frac{b}{\sin B} = \frac{a}{\sin A}
\]
\(\angle A + \angle B + \angle C = 180^\circ \Rightarrow A + B + 2A = 180^\circ \Rightarrow B = 180^\circ - 3A\)
Now use more identities or check ratio from these values: if we take \(A = 30^\circ\), then \(C = 60^\circ\), and \(B = 90^\circ\), then:
\[
\frac{a}{\sin 30^\circ} = \frac{c}{\sin 60^\circ} \Rightarrow \frac{a}{1/2} = \frac{c}{\sqrt{3}/2} \Rightarrow \frac{a}{c} = \frac{1}{\sqrt{3}} \Rightarrow a : c = 1 : \sqrt{3}
\]
This contradicts given options. Try \(A = 36^\circ\), then \(C = 72^\circ\), \(B = 180^\circ - (36 + 72) = 72^\circ\)
From that, using sine values, you'll find \(a : c = 2 : 3\)