We are given a triangle ABC with the following values: \[ a = 4, \quad b = 3, \quad c = 2. \] Our objective is to compute \( 2(a - b \cos C)(a - c \sec B) \).
Step 1: Apply the Law of Cosines to determine \( \cos C \) and \( \cos B \). The Law of Cosines states: \[ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \] Substituting the given values: \[ \cos C = \frac{4^2 + 3^2 - 2^2}{2 \times 4 \times 3} = \frac{16 + 9 - 4}{24} = \frac{21}{24} = \frac{7}{8}. \]
Step 2: Similarly, using the Law of Cosines to find \( \cos B \): \[ \cos B = \frac{a^2 + c^2 - b^2}{2ac} \] Substituting the values: \[ \cos B = \frac{4^2 + 2^2 - 3^2}{2 \times 4 \times 2} = \frac{16 + 4 - 9}{16} = \frac{11}{16}. \]
Step 3: Given that \( \cos C = \frac{7}{8} \) and \( \cos B = \frac{11}{16} \), we proceed with evaluating \( 2(a - b \cos C)(a - c \sec B) \). Since \( \sec B \) is the reciprocal of \( \cos B \): \[ \sec B = \frac{1}{\cos B} = \frac{1}{\frac{11}{16}} = \frac{16}{11}. \]
Step 4: Now compute \( 2(a - b \cos C)(a - c \sec B) \): \[ a - b \cos C = 4 - 3 \times \frac{7}{8} = 4 - \frac{21}{8} = \frac{32}{8} - \frac{21}{8} = \frac{11}{8}, \] \[ a - c \sec B = 4 - 2 \times \frac{16}{11} = 4 - \frac{32}{11} = \frac{44}{11} - \frac{32}{11} = \frac{12}{11}. \] Now, multiply these results: \[ (a - b \cos C)(a - c \sec B) = \frac{11}{8} \times \frac{12}{11} = \frac{12}{8} = \frac{3}{2}. \] Multiplying by 2: \[ 2(a - b \cos C)(a - c \sec B) = 2 \times \frac{3}{2} = 3. \] Thus, the final result is: \[ \boxed{3}. \]
If \( \sqrt{5} - i\sqrt{15} = r(\cos\theta + i\sin\theta), -\pi < \theta < \pi, \) then
\[ r^2(\sec\theta + 3\csc^2\theta) = \]
For \( n \in \mathbb{N} \), the largest positive integer that divides \( 81^n + 20n - 1 \) is \( k \). If \( S \) is the sum of all positive divisors of \( k \), then find \( S - k \).