Question:

In triangle \(ABC\), altitudes \(AD\) and \(BE\) are drawn to the corresponding bases. If \(∠BAC=45\degree\) and \(∠ABC=θ\), then \(\frac {AD}{BE}\) equals

Updated On: Sep 30, 2024
  • \(\sqrt2sin\theta\)
  • \(\sqrt2cos\theta\)
  • \(\frac{(sinθ+cosθ)}{\sqrt2}\)
  • 1
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

To find the value of \(\frac {AD}{BE}\), we'll use the given information about the angles in \(△ ABC\) and the properties of altitudes.
Let's start by labeling the triangle and its angles:
\(∠BAC = 45°\)
\(∠ABC = θ\)
Now, let's draw altitudes AD and BE:
 In triangle ABC,altitudes AD and BE are drawn to the corresponding bases.
Angle \(\angle BAE = 45°\) degrees is stated.
This suggests \(AE = BE\)
Suppose \(AE = BE = x\).  
It is written as \(\angle{ABC}=\theta\) in the right-angled \(△ ABD\)
\(sin\theta=\frac{AD}{AB}\)

\(sin\theta=\frac{AD}{x\sqrt{2}}\)

\(\sqrt2sin\theta=\frac{AD}{BE}\)

\(\frac{AD}{BE}=\sqrt2sin\theta\)

So, the correct option is (A): \(\sqrt2sin\theta\)

Was this answer helpful?
0
0

Questions Asked in CAT exam

View More Questions