Step 1: Use the formula for the altitude of a triangle.
The area of \( \triangle ABC \) can be expressed in two ways:
Equating the two expressions for the area:
\[ \frac{1}{2} \cdot BC \cdot AD = \frac{1}{2} \cdot b \cdot c \cdot \sin A. \]
Simplify:
\[ BC \cdot AD = b \cdot c \cdot \sin A. \]
Step 2: Express \( \sin A \) in terms of the sides of the triangle.
From the Pythagorean theorem, the hypotenuse of \( \triangle ABC \) is:
\[ BC = \sqrt{b^2 + c^2}. \]
The sine of angle \( A \) is given by:
\[ \sin A = \frac{\text{opposite side}}{\text{hypotenuse}} = \frac{c}{\sqrt{b^2 + c^2}}. \]
Step 3: Substitute \( \sin A \) into the equation for \( AD \).
Substitute \( \sin A = \frac{c}{\sqrt{b^2 + c^2}} \) and \( BC = \sqrt{b^2 + c^2} \) into \( BC \cdot AD = b \cdot c \cdot \sin A \):
\[ \sqrt{b^2 + c^2} \cdot AD = b \cdot c \cdot \frac{c}{\sqrt{b^2 + c^2}}. \]
Simplify:
\[ AD = \frac{b \cdot c \cdot c}{b^2 + c^2}. \]
\[ AD = \frac{bc}{\sqrt{b^2 + c^2}}. \]
Final Answer: The length of \( AD \) is \( \mathbf{\frac{bc}{\sqrt{b^2 + c^2}}} \), which corresponds to option \( \mathbf{(1)} \).