
Step 1: Use the formula for the altitude of a triangle.
The area of \( \triangle ABC \) can be expressed in two ways:
Equating the two expressions for the area:
\[ \frac{1}{2} \cdot BC \cdot AD = \frac{1}{2} \cdot b \cdot c \cdot \sin A. \]
Simplify:
\[ BC \cdot AD = b \cdot c \cdot \sin A. \]
Step 2: Express \( \sin A \) in terms of the sides of the triangle.
From the Pythagorean theorem, the hypotenuse of \( \triangle ABC \) is:
\[ BC = \sqrt{b^2 + c^2}. \]
The sine of angle \( A \) is given by:
\[ \sin A = \frac{\text{opposite side}}{\text{hypotenuse}} = \frac{c}{\sqrt{b^2 + c^2}}. \]
Step 3: Substitute \( \sin A \) into the equation for \( AD \).
Substitute \( \sin A = \frac{c}{\sqrt{b^2 + c^2}} \) and \( BC = \sqrt{b^2 + c^2} \) into \( BC \cdot AD = b \cdot c \cdot \sin A \):
\[ \sqrt{b^2 + c^2} \cdot AD = b \cdot c \cdot \frac{c}{\sqrt{b^2 + c^2}}. \]
Simplify:
\[ AD = \frac{b \cdot c \cdot c}{b^2 + c^2}. \]
\[ AD = \frac{bc}{\sqrt{b^2 + c^2}}. \]
Final Answer: The length of \( AD \) is \( \mathbf{\frac{bc}{\sqrt{b^2 + c^2}}} \), which corresponds to option \( \mathbf{(1)} \).
In the adjoining figure, \( \triangle CAB \) is a right triangle, right angled at A and \( AD \perp BC \). Prove that \( \triangle ADB \sim \triangle CDA \). Further, if \( BC = 10 \text{ cm} \) and \( CD = 2 \text{ cm} \), find the length of } \( AD \).
If a line drawn parallel to one side of a triangle intersecting the other two sides in distinct points divides the two sides in the same ratio, then it is parallel to the third side. State and prove the converse of the above statement.
In the adjoining figure, \( AP = 1 \, \text{cm}, \ BP = 2 \, \text{cm}, \ AQ = 1.5 \, \text{cm}, \ AC = 4.5 \, \text{cm} \) Prove that \( \triangle APQ \sim \triangle ABC \).
Hence, find the length of \( PQ \), if \( BC = 3.6 \, \text{cm} \).