The circuit has a total resistance composed of a \( 140.4 \, \Omega \) resistor in series with the parallel combination of \( 240 \, \Omega \) and \( 10 \, \Omega \) resistors.
The equivalent resistance \( R_{\text{eq}} \) of the parallel combination is:
\[R_{\text{eq}} = \frac{240 \times 10}{240 + 10} = \frac{2400}{250} = 9.6 \, \Omega\]
Thus, the total resistance in the circuit becomes:
\[R_{\text{total}} = 140.4 + 9.6 = 150 \, \Omega\]
Now, the current \( I \) in the circuit is:
\[I = \frac{V}{R_{\text{total}}} = \frac{24}{150} = 0.16 \, \text{A} = 160 \, \text{mA}\]
Therefore, the current in the ammeter is \( 160 \, \text{mA} \).
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).