Considering the forces acting on block \( M \) on the inclined plane:
\[ 10g \sin 53^\circ - \mu (10g) \cos 53^\circ - T = 10 \times 2 \]
Substituting values:
\[ T = 80 - 15 - 20 = 45 \, \text{N} \]
For block \( m \) on the other inclined plane:
\[ T - mg \sin 37^\circ - \mu mg \cos 37^\circ = m \times 2 \]
Substituting values:
\[ 45 = 10m \] \[ m = 4.5 \, \text{kg} \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: