Given:
\[
R_1 = 8\Omega, \quad R_2 = 2\Omega, \quad L = 5 { mH}
\]
\[
C = 50\mu F, \quad V_0 = 20\cos(2000t)
\]
Impedance Calculation:
\[
Z = \sqrt{R^2 + (X_L - X_C)^2}
\]
Step 1: Calculate Inductive Reactance \( X_L \)
\[
X_L = \omega L = 2000 \times 5 \times 10^{-3} = 10\Omega
\]
Step 2: Calculate Capacitive Reactance \( X_C \)
\[
X_C = \frac{1}{\omega C} = \frac{1}{2000 \times 50 \times 10^{-6}} = 10\Omega
\]
Since \( X_L = X_C \), the impedance reduces to:
\[
Z = R = 8 + 2 = 10\Omega
\]
Step 3: Calculate Maximum Current \( i_{\max} \)
\[
i_{\max} = \frac{V_0}{Z} = \frac{20}{10} = 2A
\]
Step 4: Calculate RMS Current \( i_{{rms}} \)
\[
i_{{rms}} = \frac{i_{\max}}{\sqrt{2}} = \frac{2}{\sqrt{2}} = 1.41A
\]
Step 5: Calculate Voltage Across \( R_1 \)
\[
V = R_1 i_{{rms}} = 1.41A \times 2
\]
\[
V = 2.82V
\]