In Young's double-slit experiment, the slits are separated by 0.28 mm, and the screen is placed 1.4 m away. The distance between the central bright fringe and the fourth bright fringe is measured to be 12 cm. Then, the wavelength of light used in the experiment is …….
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
When two or more waves meet each other then interference happens . Interference is a phenomenon in which 2 or more waves superpose to form a resultant wave of greater, lower or the same amplitude.
There are two types of wave interference:
The principle of superposition of waves refers that when two or more waves of the same type are incident on the same point, the resultant amplitude at that point is equal to the vector sum of the amplitudes of the individual waves. If the crest of a wave meets the crest of another wave of the same frequency at the same point, sum of individual amplitudes is called as constructive interference.The destructive interference occurs when the maxima of the two waves are at 180 degrees out of phase and a positive displacement of one wave is cancelled exactly by a negative displacement of the other wave.