Step 1: Recall stress dependence of Nabarro–Herring creep.
For diffusion creep, steady-state creep rate is proportional to stress to the power one:
\[
\dot{\varepsilon} \propto \sigma
\]
Step 2: Write ratio relation.
\[
\frac{\dot{\varepsilon}_1}{\dot{\varepsilon}_2} = \frac{\sigma_1}{\sigma_2}
\]
Step 3: Substitute given values.
\[
\frac{10^{-8}}{10^{-9}} = \frac{10}{\sigma_2}
\]
\[
10 = \frac{10}{\sigma_2}
\]
\[
\sigma_2 = 1 \, MPa
\]
Wait, let's check carefully:
Given: At $\sigma_1 = 10$ MPa, $\dot{\varepsilon}_1 = 10^{-8}$ s$^{-1}$.
We want $\dot{\varepsilon}_2 = 10^{-9}$ s$^{-1}$.
So:
\[
\frac{10^{-9}}{10^{-8}} = \frac{\sigma_2}{10}
\]
\[
0.1 = \frac{\sigma_2}{10}
\]
\[
\sigma_2 = 1 \, MPa
\]
Final Answer:
\[
\boxed{1 \, MPa}
\]