We are given the equation:
\[ x^2 - 2|x| + |a - 2| = 0 \]
Let’s simplify by substituting \( |x| = t \). Then the equation becomes:
\[ t^2 - 2t + |a - 2| = 0 \]
Solving the quadratic in \( t \):
\[ t = 1 \pm \sqrt{1 - |a - 2|} \]
\[ |x| = 1 \pm \sqrt{1 - (a - 2)} = 1 \pm \sqrt{3 - a} \]
For \( |x| \) to be real and integer, \( 3 - a \geq 0 \Rightarrow a \leq 3 \)
Also since \( a > 2 \), only \( a = 3 \) is valid.
For \( a = 3 \Rightarrow |x| = 1 \Rightarrow x = \pm 1 \) ⇒ 2 solutions
\[ |x| = 1 \pm \sqrt{1 - 0} = 1 \pm 1 \Rightarrow |x| = 0, 2 \]
\[ \Rightarrow x = 0, \pm 2 \Rightarrow 3 \text{ solutions} \]
\[ |x| = 1 \pm \sqrt{1 - (2 - a)} = 1 \pm \sqrt{a - 1} \]
To keep values real and integer, \( a \geq 1 \) and \( a < 2 \) ⇒ Only possible value is \( a = 1 \)
\[ \Rightarrow |x| = 1 \Rightarrow x = \pm 1 \Rightarrow 2 \text{ more solutions} \]
Total number of integer solutions: \( \boxed{7} \)
We are given the equation:
\[ |x|^2 - 2|x| + |a - 2| = 0 \]
The equation is a quadratic in \( |x| \):
\[ |x|^2 - 2|x| + |a - 2| = 0 \]
We know that for real solutions of \( |x| \), the discriminant must be a perfect square. Also, since \( |x| \geq 0 \), the roots must be non-negative.
Combining all valid combinations:
✅ Therefore, the total number of valid integer pairs \( (x, a) \) is: \[ \boxed{7} \]
When $10^{100}$ is divided by 7, the remainder is ?