The correct answer is (D): \(7\)
\(x^2-2|x|+|a-2|=0\)
\(|x|=\frac{2±\sqrt{4-4(|a-2|})}{2}\)
\(|x|=1±\sqrt{1-|a-2|}\)
If \(a>2;|a-2|=a-2\)
\(|x|=1±\sqrt{1-(a-2)}\)
= \(1±\sqrt{3-a}\)
since \(x\) is integer \(3-a≥0\)
\(a≤3\)
The possible values of \(a\) is = \(3\)
Then \(x = ±1\);
If \(a=2,|x|=|1±1|,⇒x=±2,0\)
If \(a<2,|a-2|=2-a\)
\(|x|=1±\sqrt{1-(2-a)}\)
\(|x|=1±\sqrt{a-1}\)
Since \(x\) is integer \(a-1≥0⇒a≥1\)
\(∴\) The possible values of \(a\) is \(1\)
If \(a=1,|x|=1⇒x=±1\)
\(∴\) The possible pairs =\((-1,3),(1,3),(1,1),(-1,1),(2,2),(-2,2),(0,2)\)i.e.,\(7\)