The energy corresponding to the first dip is given as:
\[10.2 \, \text{eV} = \frac{hc}{\lambda}\]
Rearrange to solve for \( \lambda \):
\[\lambda = \frac{1245 \, \text{eV} \cdot \text{nm}}{10.2 \, \text{eV}}\]
\[\lambda = 122.06 \, \text{nm}\]
Given below are two statements:
Statement (I) : The dimensions of Planck’s constant and angular momentum are same.
Statement (II) : In Bohr’s model, electron revolves around the nucleus in those orbits for which angular momentum is an integral multiple of Planck’s constant.
In the light of the above statements, choose the most appropriate answer from the options given below: