In Fig. 9.23, A,B and C are three points on a circle with centre O such that ∠ BOC = 30° and ∠ AOB = 60°. If D is a point on the circle other than the arc ABC, find ∠ADC.

It can be observed that
∠AOC = ∠AOB + ∠BOC
= 60° + 30°
= 90°
We know that angle subtended by an arc at the centre is double the angle subtended by it any point on the remaining part of the circle.
∠ADC=\(\frac{1}{2}\)∠AOC=\(\frac{1}{2}\)× 90°= 45°
If a line intersects two concentric circles (circles with the same centre) with centre O at A, B, C and D, prove that AB = CD (see Fig).

(i) The kind of person the doctor is (money, possessions)
(ii) The kind of person he wants to be (appearance, ambition)
ABCD is a quadrilateral in which AD = BC and ∠ DAB = ∠ CBA (see Fig. 7.17). Prove that
(i) ∆ ABD ≅ ∆ BAC
(ii) BD = AC
(iii) ∠ ABD = ∠ BAC.
