In a dilute alkaline solution, the permanganate ion \( \text{MnO}_4^- \) undergoes a chemical reduction reaction to form the manganate ion \( \text{MnO}_4^{2-} \). This process can be explained by analyzing the changes in oxidation states and balancing the resultant half-reaction in a basic environment.
When potassium permanganate \( \text{KMnO}_4 \) is dissolved in a dilute alkaline solution, the \(\text{MnO}_4^-\) ion is reduced. The reaction can be represented as follows:
Reduction half-reaction:
\( \text{MnO}_4^- + e^- \rightarrow \text{MnO}_4^{2-} \)
In this reaction, the oxidation state of manganese changes from +7 in \( \text{MnO}_4^- \) to +6 in \( \text{MnO}_4^{2-} \). This change indicates a gain of one electron, demonstrating a reduction process. In an alkaline medium, the addition of hydroxide ions \( \text{OH}^- \) assists in maintaining charge balance:
\( \text{MnO}_4^- + \text{e}^- + \text{OH}^- \rightarrow \text{MnO}_4^{2-} + \text{OH}^- \)
Thus, in dilute alkaline conditions, \( \text{MnO}_4^- \) will most commonly convert into \( \text{MnO}_4^{2-} \), which is known as the manganate ion.
200 cc of $x \times 10^{-3}$ M potassium dichromate is required to oxidise 750 cc of 0.6 M Mohr's salt solution in acidic medium. Here x = ______ .

200 ml of an aqueous solution contains 3.6 g of Glucose and 1.2 g of Urea maintained at a temperature equal to 27$^{\circ}$C. What is the Osmotic pressure of the solution in atmosphere units?
Given Data R = 0.082 L atm K$^{-1}$ mol$^{-1}$
Molecular Formula: Glucose = C$_6$H$_{12}$O$_6$, Urea = NH$_2$CONH$_2$