List-I (Polymer) | List-II (Used in making) |
---|---|
Polymer 1 | Application 1 |
Polymer 2 | Application 2 |
Polymer 3 | Application 3 |
Polymer 4 | Application 4 |
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is