Given \(A= 72\)
Also, \(A=0.9×B \)
\(⇒ B=\frac{A}{0.9}\)
\(=\frac{72}{0.9}\)
\(=80.\)
And \(B=1.25×C \)
\(⇒ C = \frac{B}{1.25}\)
\(=\frac{80}{1.25}\)
\(=64\)
And \(C=0.8×D \)
\(⇒ D =\frac{C}{0.8} \)
\(=\frac{ 64}{0.8}\)
\(=80.\)
List-I | List-II |
---|---|
(A) Confidence level | (I) Percentage of all possible samples that can be expected to include the true population parameter |
(B) Significance level | (III) The probability of making a wrong decision when the null hypothesis is true |
(C) Confidence interval | (II) Range that could be expected to contain the population parameter of interest |
(D) Standard error | (IV) The standard deviation of the sampling distribution of a statistic |