Question:

In an electrostatic field, the displacement vector is \[ \vec{D}(x,y,z) = (x^3\,\vec{i} + y^3\,\vec{j} + xy^2\,\vec{k})\ \text{C/m}^2. \] A cube of side 1 m is centered at the origin with vertices at \((\pm 0.5, \pm 0.5, \pm 0.5)\). Find the electric charge enclosed within the cube (rounded to two decimals).

Show Hint

For symmetric regions, exploit symmetry to reduce triple integrals—here $x^2$ and $y^2$ contribute equally.
Updated On: Dec 15, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 0.48

Solution and Explanation

Using Gauss’s law: \[ Q = \iiint_R (\nabla \cdot \vec{D}) \, dV \] Compute divergence: \[ \nabla \cdot \vec{D} = \frac{\partial}{\partial x}(x^3) + \frac{\partial}{\partial y}(y^3) + \frac{\partial}{\partial z}(xy^2) \] \[ \nabla \cdot \vec{D} = 3x^2 + 3y^2 + 0. \] Thus: \[ Q = \iiint_R (3x^2 + 3y^2)\, dV \] Because the cube is symmetric: \[ Q = 3\iiint x^2\, dV + 3\iiint y^2\, dV \] Both integrals are equal, so: \[ Q = 6 \iiint_R x^2\, dV \] Compute: \[ \iiint_R x^2\, dV = \left( \int_{-0.5}^{0.5} x^2\, dx \right) \left( \int_{-0.5}^{0.5} dy \right) \left( \int_{-0.5}^{0.5} dz \right) \] \[ \int_{-0.5}^{0.5} x^2\, dx = 2\int_{0}^{0.5} x^2\, dx = 2\left[\frac{x^3}{3}\right]_{0}^{0.5} = 2 \cdot \frac{0.125}{3} = \frac{0.25}{3} = 0.08333 \] The remaining integrals give: \[ \int_{-0.5}^{0.5} dy = 1,\quad \int_{-0.5}^{0.5} dz = 1 \] Thus: \[ \iiint_R x^2\, dV = 0.08333 \] So: \[ Q = 6(0.08333) = 0.49998\ \text{C} \] Rounded to two decimals: \[ \boxed{0.50\ \text{C}} \]
Was this answer helpful?
0
0

Questions Asked in GATE EC exam

View More Questions