Step 1: Write the balanced half-reaction
The reduction of dichromate ions in acidic medium is given by: \[ {Cr_2O_7^{2-} + 14H^+ + 6e^- -> 2Cr^{3+} + 7H2O} \] From the equation, 6 moles of electrons reduce 2 moles of \( {Cr^{3+}} \). So, to produce 1 mole of \( {Cr^{3+}} \), only 3 moles of electrons are needed.
Step 2: Use Faraday's laws of electrolysis
Total charge \( Q = n \times F = 3 \times 96500 = 289500 \, \text{C} \)
Step 3: Use relation \( Q = i \times t \)
Time \( t = 48.25 \, \text{minutes} = 48.25 \times 60 = 2895 \, \text{seconds} \)
So, \[ i = \frac{Q}{t} = \frac{3 \times 96500}{48.25 \times 60} = \frac{289500}{2895} = \boxed{100 \, \text{A}} \]
Concentration of KCl solution (mol/L) | Conductivity at 298.15 K (S cm-1) | Molar Conductivity at 298.15 K (S cm2 mol-1) |
---|---|---|
1.000 | 0.1113 | 111.3 |
0.100 | 0.0129 | 129.0 |
0.010 | 0.00141 | 141.0 |
Column I | Column II |
---|---|
i. Lead storage cell | d. Inverter |
ii. Mercury cell | b. Apollo Space Programme |
iii. Dry cell | c. Wrist watch |
iv. Fuel cell | a. Wall clock |
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is