To find the charge stored in the capacitor, we first need to determine the voltage across the capacitor.
The resistors \( R_1 \) and \( R_2 \) are in parallel, and their equivalent resistance (\( R_{\text{eq1}} \)) is given by:
\[ \frac{1}{R_{\text{eq1}}} = \frac{1}{R_1} + \frac{1}{R_2} \]
Substituting the values:
\[ \frac{1}{R_{\text{eq1}}} = \frac{1}{4} + \frac{1}{5} = \frac{5 + 4}{20} = \frac{9}{20} \] \[ R_{\text{eq1}} = \frac{20}{9} \, \Omega \]
The equivalent resistance of \( R_{\text{eq1}} \) in series with \( R_3 \) is:
\[ R_{\text{total}} = R_{\text{eq1}} + R_3 = \frac{20}{9} + 6 = \frac{20}{9} + \frac{54}{9} = \frac{74}{9} \, \Omega \]
The total current (\( I \)) supplied by the voltage source is given by Ohm's law:
\[ I = \frac{V}{R_{\text{total}}} \]
Substituting the given values:
\[ I = \frac{10 \, \text{V}}{\frac{74}{9} \, \Omega} = \frac{10 \times 9}{74} \, \text{A} = \frac{90}{74} \, \text{A} \approx 1.216 \, \text{A} \]
The voltage across the parallel combination of \( R_1 \) and \( R_2 \) (which is also the voltage across the capacitor) is given by:
\[ V_C = I \times R_{\text{eq1}} \]
Substituting the values:
\[ V_C = \left( \frac{90}{74} \right) \times \frac{20}{9} \, \text{V} \] \[ V_C = \frac{1800}{666} \, \text{V} \approx 2.7 \, \text{V} \]
The charge stored in the capacitor is given by:
\[ Q = C \times V_C \]
Substituting the values:
\[ Q = 10 \times 10^{-6} \, \text{F} \times 2.7 \, \text{V} \] \[ Q = 27 \times 10^{-6} \, \text{C} = 60 \, \mu \text{C} \]
Conclusion: The amount of charge stored in the capacitor is \( 60 \, \mu \text{C} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: