The average power in an AC circuit over one complete cycle is calculated as:
\[
P_{\text{avg}} = V_{\text{rms}} I_{\text{rms}} \cos(\Delta \phi),
\]
where:
- \( V_{\text{rms}} = \frac{V_0}{\sqrt{2}} \),
- \( I_{\text{rms}} = \frac{I_0}{\sqrt{2}} \),
- \( \Delta \phi \) is the phase difference between the voltage and current.
Given:
\[
V_0 = 100 \, \text{V}, \quad I_0 = 100 \times 10^{-3} \, \text{A}, \quad \Delta \phi = \frac{\pi}{3}.
\]
Step 1: Calculate \( V_{\text{rms}} \) and \( I_{\text{rms}} \)}
\[
V_{\text{rms}} = \frac{V_0}{\sqrt{2}} = \frac{100}{\sqrt{2}}, \quad I_{\text{rms}} = \frac{I_0}{\sqrt{2}} = \frac{100 \times 10^{-3}}{\sqrt{2}}.
\]
Step 2: Substitute into the Power Formula
\[
P_{\text{avg}} = \frac{100}{\sqrt{2}} \cdot \frac{100 \times 10^{-3}}{\sqrt{2}} \cdot \cos\left(\frac{\pi}{3}\right).
\]
Step 3: Simplify the Expression
\[
P_{\text{avg}} = \frac{100 \cdot 0.1}{2} \cdot \frac{1}{2} = \frac{10}{4} = 2.5 \, \text{W}.
\]
Final Answer:
\[
\boxed{2.5 \, \text{W}}
\]