We are given:
\[
\frac{b + c}{11} = \frac{c + a}{12} = \frac{a + b}{13}
\]
Let that common ratio be \( k \). Then:
\[
b + c = 11k \quad \text{(1)}
c + a = 12k \quad \text{(2)}
a + b = 13k \quad \text{(3)}
\]
Step 1: Solve these equations to find \( a, b, c \) in terms of \( k \)
Add (1) and (2):
\[
b + c + c + a = 11k + 12k \Rightarrow a + b + 2c = 23k \quad \text{(4)}
\]
Subtract (3):
\[
(4) - (3): (a + b + 2c) - (a + b) = 23k - 13k \Rightarrow 2c = 10k \Rightarrow c = 5k
\]
Substitute \( c = 5k \) into (1):
\[
b + 5k = 11k \Rightarrow b = 6k
\]
Substitute \( c = 5k \) into (2):
\[
a + 5k = 12k \Rightarrow a = 7k
\]
So we have:
\[
a = 7k, \quad b = 6k, \quad c = 5k
\]
Step 2: Use Law of Cosines
From the Law of Cosines:
\[
\cos A = \frac{b^2 + c^2 - a^2}{2bc}
= \frac{(6k)^2 + (5k)^2 - (7k)^2}{2 \cdot 6k \cdot 5k}
= \frac{36k^2 + 25k^2 - 49k^2}{60k^2}
= \frac{12k^2}{60k^2} = \frac{1}{5}
\]
\[
\cos B = \frac{a^2 + c^2 - b^2}{2ac}
= \frac{49k^2 + 25k^2 - 36k^2}{2 \cdot 7k \cdot 5k}
= \frac{38k^2}{70k^2} = \frac{19}{35}
\]
\[
\cos C = \frac{a^2 + b^2 - c^2}{2ab}
= \frac{49k^2 + 36k^2 - 25k^2}{2 \cdot 7k \cdot 6k}
= \frac{60k^2}{84k^2} = \frac{5}{7}
\]
Now express all ratios with common denominator:
- \( \cos A = \frac{1}{5} = \frac{7}{35} \)
- \( \cos B = \frac{19}{35} \)
- \( \cos C = \frac{25}{35} \)
Thus:
\[
\cos A : \cos B : \cos C = 7 : 19 : 25
\]
\[
\boxed{\text{Correct answer is Option (2)}}
\]