Question:

In a triangle ABC, if |BC| = 8, |CA| = 7, |AB| = 10, then the projection of the vector AB on AC is equal to :

Show Hint

The projection of $\vec{a}$ on $\vec{b}$ is $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = |\vec{a}| \cos \theta$.
Updated On: Jan 12, 2026
  • 115/16
  • 85/14
  • 127/20
  • 25/4
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Projection of $\vec{AB}$ on $\vec{AC}$ is $|\vec{AB}| \cos A$.
Step 2: Using Cosine Rule: $\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{7^2 + 10^2 - 8^2}{2(7)(10)}$. $\cos A = \frac{49 + 100 - 64}{140} = \frac{85}{140}$.
Step 3: Projection $= 10 \times \frac{85}{140} = \frac{85}{14}$.
Was this answer helpful?
0
0