In a sports event, six teams (A, B, C, D, E and F) are competing against each other. Matches are scheduled in two stages. Each team plays three matches in Stage–I and two matches in Stage–II. No team plays against the same team more than once in the event. No ties are permitted in any of the matches. The observations after the completion of Stage–I and Stage–II are as given below.
Stage–I:
Stage–II:

Two players \( A \) and \( B \) are playing a game. Player \( A \) has two available actions \( a_1 \) and \( a_2 \). Player \( B \) has two available actions \( b_1 \) and \( b_2 \). The payoff matrix arising from their actions is presented below:

Let \( p \) be the probability that player \( A \) plays action \( a_1 \) in the mixed strategy Nash equilibrium of the game.
Then the value of p is (round off to one decimal place).
Three friends, P, Q, and R, are solving a puzzle with statements:
(i) If P is a knight, Q is a knave.
(ii) If Q is a knight, R is a spy.
(iii) If R is a knight, P is a knave. Knights always tell the truth, knaves always lie, and spies sometimes tell the truth. If each friend is either a knight, knave, or spy, who is the knight?
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: