Step 1: Fraunhofer single-slit intensity and minima condition.
Treat the slit of width $a$ as a line of secondary sources (Huygens principle). The complex amplitude at an angle $\theta$ is the phasor sum across the slit and equals
\[
E(\theta) \propto \frac{\sin \beta}{\beta}, \qquad \beta \equiv \frac{\pi a}{\lambda}\sin\theta.
\]
Hence the intensity
\[
I(\theta)=I_0\left(\frac{\sin\beta}{\beta}\right)^2.
\]
Minima occur when $\sin\beta=0$ with $\beta\neq 0$, i.e.,
\[
\beta = m\pi (m=1,2,3,\ldots)\ ⇒\ a\sin\theta = m\lambda.
\]
Step 2: Use the given order and angle.
“Second minimum” $⇒ m=2$, and $\theta=60^\circ$:
\[
a\sin 60^\circ = 2\lambda \ ⇒\ a\left(\frac{\sqrt{3}}{2}\right)=2\lambda.
\]
Step 3: Solve for $a$.
\[
a = \frac{2\lambda}{(\sqrt{3}/2)}=\frac{4\lambda}{\sqrt{3}}.
\]
Final Answer: The slit width is \(\displaystyle a=\frac{4\lambda}{\sqrt{3}}.\)