Step 1: In a single-phase semi-converter, SCRs (Silicon-Controlled Rectifiers) are used for controlled rectification of AC power.
Step 2: The firing angle \( \alpha \) determines when the SCR turns on, and the extinction angle \( \beta \) defines when it turns off.
Step 3: Without a freewheeling diode, the SCR remains conducting until the current naturally falls to zero, which occurs at the extinction angle \( \beta \).
Step 4: The total conduction period of each SCR is given by: \[ \text{Conduction time} = \beta - \alpha \]
Step 5: Evaluating options:
- (A) \( \pi - \alpha \) (Incorrect): This is valid only for continuous conduction mode.
- (B) \( \beta - \alpha \) (Correct): This correctly accounts for the discontinuous conduction mode where conduction stops at \( \beta \).
- (C) \( \alpha \) (Incorrect): The firing angle does not directly indicate conduction time.
- (D) \( \beta \) (Incorrect): The conduction duration is relative to \( \alpha \), not just \( \beta \).
The Lagrangian of a particle of mass \( m \) and charge \( q \) moving in a uniform magnetic field of magnitude \( 2B \) that points in the \( z \)-direction, is given by: \[ L = \frac{m}{2} v^2 + qB(x v_y - y v_x) \] where \( v_x, v_y, v_z \) are the components of its velocity \( v \). If \( p_x, p_y, p_z \) denote the conjugate momenta in the \( x, y, z \)-directions and \( H \) is the Hamiltonian, which of the following option(s) is/are correct?
A proton is moving undeflected in a region of crossed electric and magnetic fields at a constant speed of \( 2 \times 10^5 \, \text{m/s} \). When the electric field is switched off, the proton moves along a circular path of radius 2 cm. The magnitude of electric field is \( x \times 10^4 \, \text{N/C} \). The value of \( x \) is \(\_\_\_\_\_\). (Take the mass of the proton as \( 1.6 \times 10^{-27} \, \text{kg} \)).
Due to presence of an em-wave whose electric component is given by \( E = 100 \sin(\omega t - kx) \, NC^{-1} \), a cylinder of length 200 cm holds certain amount of em-energy inside it. If another cylinder of same length but half diameter than previous one holds same amount of em-energy, the magnitude of the electric field of the corresponding em-wave should be modified as:
In the first configuration (1) as shown in the figure, four identical charges \( q_0 \) are kept at the corners A, B, C and D of square of side length \( a \). In the second configuration (2), the same charges are shifted to mid points C, E, H, and F of the square. If \( K = \frac{1}{4\pi \epsilon_0} \), the difference between the potential energies of configuration (2) and (1) is given by:
In the first configuration (1) as shown in the figure, four identical charges \( q_0 \) are kept at the corners A, B, C and D of square of side length \( a \). In the second configuration (2), the same charges are shifted to mid points C, E, H, and F of the square. If \( K = \frac{1}{4\pi \epsilon_0} \), the difference between the potential energies of configuration (2) and (1) is given by:
A closed-loop system has the characteristic equation given by: $ s^3 + k s^2 + (k+2) s + 3 = 0 $.
For the system to be stable, the value of $ k $ is:
A digital filter with impulse response $ h[n] = 2^n u[n] $ will have a transfer function with a region of convergence.