(a) \(\triangle ABC\) is right-angled at \(B\).
Therefore, by applying Pythagoras theorem, we obtain
\(AC^2 = AB^2 + BC^2\)
\(AC^2 = (6 cm)^2 + (8 cm)^2\)
\(AC^2 = (36 + 64) cm^2\)
=\(100\) \(cm^2\)
\(AC = (\sqrt{100}) cm = (\sqrt{10 × 10}) cm\)
\(AC = 10 \;cm\)
(b) \(\triangle ABC\) is right-angled at \(B\).
Therefore, by applying Pythagoras theorem, we obtain
\(AC^2 = AB^2+ BC^2\)
\((13 cm)^2= (AB)^2+ (5 cm)^2\)
\(AB^2= (13 cm)^2- (5 cm)^2\)
=\( (169 - 25) cm^2\)
= \(144 \;cm^2\)
\(AB = (\sqrt{144}) cm = (\sqrt{12 × 12}) \,cm\)
\(AB = 12 \;cm\)