The magnetic field at a distance \( d \) from a long straight conductor carrying current \( I \) is given by: \[ B = \frac{\mu_0 I}{2 \pi d} \] where: - \( B \) is the magnetic field, - \( \mu_0 \) is the permeability of free space (\( \mu_0 = 4\pi \times 10^{-7} \, \text{T m/A} \)), - \( I \) is the current, - \( d \) is the distance from the conductor to the point where the magnetic field is calculated.
The magnetic force on a moving charge is given by the Lorentz force law: \[ \mathbf{F}_B = q \mathbf{v} \times \mathbf{B} \] where: - \( q \) is the charge of the particle (negative charge), - \( \mathbf{v} \) is the velocity of the particle, and - \( \mathbf{B} \) is the magnetic field. Since the magnetic field is directed into the page and the particle is moving along the -X axis, applying the right-hand rule for \( \mathbf{v} \times \mathbf{B} \), we find that the magnetic force will be directed **upwards**, along the positive \( Y \)-axis. The magnitude of the magnetic force is: \[ F_B = |q| v_0 \frac{\mu_0 I}{2 \pi d} \]
The particle experiences an electric force due to the uniform electric field \( \mathbf{E} \). The electric force is given by: \[ \mathbf{F}_E = q \mathbf{E} \] Since the particle is negatively charged, the electric force will be in the **opposite direction** to the electric field. If the electric field is directed along the positive \( Y \)-axis, the electric force will be directed along the **negative \( Y \)-axis**. The magnitude of the electric force is: \[ F_E = |q| E \]
For the particle to move with a constant velocity, the net force on the particle must be zero. Therefore, the magnetic and electric forces must balance each other. Thus: \[ F_B = F_E \] Substituting the expressions for \( F_B \) and \( F_E \): \[ |q| v_0 \frac{\mu_0 I}{2 \pi d} = |q| E \] Canceling \( |q| \) from both sides: \[ v_0 \frac{\mu_0 I}{2 \pi d} = E \]
The relationship between the velocity \( v_0 \), the current \( I \), the distance \( d \), the electric field \( E \), and the charge \( q \) is given by: \[ v_0 = \frac{2 \pi d E}{\mu_0 I} \] This equation shows that the particle will continue to move with a constant velocity as long as the electric force balances the magnetic force.
निम्नलिखित गद्यांश की सप्रसंग व्याख्या कीजिए :
‘‘पुर्ज़े खोलकर फिर ठीक करना उतना कठिन काम नहीं है, लोग सीखते भी हैं, सिखाते भी हैं, अनाड़ी के हाथ में चाहे घड़ी मत दो पर जो घड़ीसाज़ी का इम्तहान पास कर आया है उसे तो देखने दो । साथ ही यह भी समझा दो कि आपको स्वयं घड़ी देखना, साफ़ करना और सुधारना आता है कि नहीं । हमें तो धोखा होता है कि परदादा की घड़ी जेब में डाले फिरते हो, वह बंद हो गई है, तुम्हें न चाबी देना आता है न पुर्ज़े सुधारना तो भी दूसरों को हाथ नहीं लगाने देते इत्यादि ।’’