Ohm’s Law states: \[ E = IR \] Using resistance formula: \[ R = \frac{\rho L}{A} \] Rearrange: \[ \rho = \frac{R A}{L} \] \[ \rho = \frac{(7.5 \times 1) \times (4 \times 10^{-4})}{1} \] \[ = 3 \times 10^{-3} \, \Omega \text{m} \] Thus, the correct answer is \( 3 \times 10^{-3} \) ohm\m.
If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is: