Step 1: Use Einstein’s mass-energy equivalence:
\[
E = mc^2,
\]
where \(m\) is the mass converted per second (mass flow rate), \(c = 3 \times 10^8 \, m/s\) is the speed of light.
Step 2: Convert the mass flow rate to kilograms per second:
\[
m = 2 \times 10^{-3} \, g/s = 2 \times 10^{-6} \, kg/s.
\]
Step 3: Calculate power output \(P\) in watts (J/s):
\[
P = m c^2 = 2 \times 10^{-6} \times (3 \times 10^8)^2 = 2 \times 10^{-6} \times 9 \times 10^{16} = 1.8 \times 10^{11} \, W.
\]
Step 4: Convert watts to kilowatts:
\[
P = \frac{1.8 \times 10^{11}}{1000} = 1.8 \times 10^{8} \, kW.
\]
Answer:
\[
\boxed{1.8 \times 10^{8} \, \text{kW}}.
\]