Energy released per fission \( E_{fission} = 200 \, \text{MeV} \).
Power generated by the reactor \( P = 1 \, \text{MW} = 1 \times 10^6 \, \text{Watts} = 10^6 \, \text{J/s} \).
First, convert energy per fission to Joules:
\( 1 \, \text{MeV} = 10^6 \, \text{eV} \).
\( 1 \, \text{eV} = 1.
6 \times 10^{-19} \, \text{J} \).
So, \( E_{fission} = 200 \times 10^6 \times 1.
6 \times 10^{-19} \, \text{J} \).
\[ E_{fission} = 2 \times 10^2 \times 10^6 \times 1.
6 \times 10^{-19} \, \text{J} \]
\[ = 2 \times 1.
6 \times 10^{2+6-19} \, \text{J} = 3.
2 \times 10^{8-19} \, \text{J} = 3.
2 \times 10^{-11} \, \text{J} \]
The rate of fission \( R_{fission} \) (number of fissions per second) is related to the power P by:
\( P = R_{fission} \times E_{fission} \).
So, \( R_{fission} = \frac{P}{E_{fission}} \).
\[ R_{fission} = \frac{10^6 \, \text{J/s}}{3.
2 \times 10^{-11} \, \text{J/fission}} \]
\[ R_{fission} = \frac{1}{3.
2} \times \frac{10^6}{10^{-11}} \, \text{fissions/s} \]
\[ R_{fission} = \frac{1}{3.
2} \times 10^{6 - (-11)} = \frac{1}{3.
2} \times 10^{17} \, \text{fissions/s} \]
Calculate \( \frac{1}{3.
2} \):
\( \frac{1}{3.
2} = \frac{10}{32} = \frac{5}{16} \).
\( 5 \div 16 \):
\( 5.
0 \div 16 = 0.
3 \).
(163=48, rem 2)
\( 20 \div 16 = 1 \).
(161=16, rem 4)
\( 40 \div 16 = 2 \).
(162=32, rem 8)
\( 80 \div 16 = 5 \).
So, \( \frac{1}{3.
2} = 0.
3125 \).
\[ R_{fission} = 0.
3125 \times 10^{17} \, \text{fissions/s} \]
To match the options format \( 3.
125 \times 10^X \):
\[ R_{fission} = 3.
125 \times 10^{-1} \times 10^{17} = 3.
125 \times 10^{16} \, \text{fissions/s} \]
This matches option (4).