Given: - Resistance in the left gap (\( R \)) = \( 2 \, \Omega \) - Balance length (\( L_1 \)) = \( 40 \, \text{cm} \) - Shunting resistance (\( R_s \)) = \( 2 \, \Omega \)
The balance condition of the Wheatstone bridge is given by:
\[ \frac{R}{X} = \frac{L_1}{100 - L_1} \]
Substituting the given values:
\[ \frac{2}{X} = \frac{40}{60} \] \[ X = \frac{2 \times 60}{40} \] \[ X = 3 \, \Omega \]
When the unknown resistance \( X \) is shunted with \( R_s = 2 \, \Omega \), the equivalent resistance (\( X_{\text{sh}} \)) is given by:
\[ \frac{1}{X_{\text{sh}}} = \frac{1}{X} + \frac{1}{R_s} \]
Substituting the values:
\[ \frac{1}{X_{\text{sh}}} = \frac{1}{3} + \frac{1}{2} \] \[ \frac{1}{X_{\text{sh}}} = \frac{2 + 3}{6} = \frac{5}{6} \] \[ X_{\text{sh}} = \frac{6}{5} \, \Omega \]
Using the balance condition again:
\[ \frac{R}{X_{\text{sh}}} = \frac{L_2}{100 - L_2} \]
Substituting the values:
\[ \frac{2}{\frac{6}{5}} = \frac{L_2}{100 - L_2} \] \[ \frac{2 \times 5}{6} = \frac{L_2}{100 - L_2} \] \[ \frac{5}{3} = \frac{L_2}{100 - L_2} \]
Cross-multiplying:
\[ 5(100 - L_2) = 3L_2 \] \[ 500 - 5L_2 = 3L_2 \] \[ 500 = 8L_2 \] \[ L_2 = \frac{500}{8} = 62.5 \, \text{cm} \]
The change in balance length is given by:
\[ \Delta L = L_2 - L_1 \]
Substituting the values:
\[ \Delta L = 62.5 \, \text{cm} - 40 \, \text{cm} \] \[ \Delta L = 22.5 \, \text{cm} \]
The balance length changes by \( 22.5 \, \text{cm} \).
In the given figure of meter of bridge experiment, the balancing length AC corresponding to null deflection of the galvanometer is 40 cm. The balancing length, if the radius of the wire AB is doubled, will be _______ cm.