In a given data set mean of 40 observations is 50 and standard deviation is 12. Two readings which were 20 and 25, were mistakenly taken as 40 and 45. Find correct variance of data set
169
150
178
180
The correct answer is option (C) : 178
Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
---|---|---|---|---|---|---|
Frequency | 11 | 8 | 15 | 7 | 10 | 9 |
Let the Mean and Variance of five observations $ x_i $, $ i = 1, 2, 3, 4, 5 $ be 5 and 10 respectively. If three observations are $ x_1 = 1, x_2 = 3, x_3 = a $ and $ x_4 = 7, x_5 = b $ with $ a>b $, then the Variance of the observations $ n + x_n $ for $ n = 1, 2, 3, 4, 5 $ is
Find the mean of the following distribution:
\[\begin{array}{|c|c|c|c|c|c|c|c|} \hline \textbf{Class-interval} & 11-13 & 13-15 & 15-17 & 17-19 & 19-21 & 21-23 & 23-25 \\ \hline \text{Frequency} & \text{7} & \text{6} & \text{9} & \text{13} & \text{20} & \text{5} & \text{4} \\ \hline \end{array}\]
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
Statistics is a field of mathematics concerned with the study of data collection, data analysis, data interpretation, data presentation, and data organization. Statistics is mainly used to acquire a better understanding of data and to focus on specific applications. Also, Statistics is the process of gathering, assessing, and summarising data in a mathematical form.
Using measures of central tendency and measures of dispersion, the descriptive technique of statistics is utilized to describe the data collected and summarise the data and its attributes.
This statistical strategy is utilized to produce conclusions from data. Inferential statistics rely on statistical tests on samples to make inferences, and it does so by discovering variations between the two groups. The p-value is calculated and differentiated to the probability of chance() = 0.05. If the p-value is less than or equivalent to, the p-value is considered statistically significant.