Given: \[ \text{Latent heat of fusion of ice} = 80 \, \text{cal/g} \] \[ 1 \, \text{cal} = 4.184 \, \text{J} \] So, \[ L = 80 \times 4.184 = 334.72 \, \text{J/g} \]
\[ m = 2 \, \text{kg} = 2000 \, \text{g} \]
\[ Q = m \cdot L = 2000 \times 334.72 = 669440 \, \text{J} \]
\[ t = 1 \, \text{hour} = 3600 \, \text{seconds} \]
\[ P = \frac{Q}{t} = \frac{669440}{3600} \approx 185.96 \, \text{W} \]
The minimum power required by the motor is: \[ \boxed{185.96 \, \text{W}} \] If multiple-choice options are given and this value isn't among them, then either an approximation or a simplification (e.g., using \(1 \, \text{cal} = 4.2 \, \text{J}\)) may be expected.
\[ Q = m \cdot L = 2000 \cdot 80 = 160000 \, \text{cal} \] \[ Q = 160000 \cdot 4.2 = 672000 \, \text{J} \]
Time \( t = 1 \, \text{hour} = 3600 \, \text{s} \) \[ P = \frac{Q}{t} = \frac{672000}{3600} = 186.67 \, \text{W} \]
\[ COP = \frac{T_C}{T_H - T_C} = \frac{273}{293 - 273} = \frac{273}{20} = 13.65 \]
\[ W = \frac{Q}{COP} = \frac{186.67}{13.65} \approx 13.67 \, \text{W} \]
The minimum power required by the refrigerator is: \[ \boxed{13.6 \, \text{W}} \]