Step 1: Using the fringe width formula.
The fringe width \( \beta \) is given by:
\[
\beta = \frac{\lambda D}{d}
\]
Where:
- \( \lambda = 5000 \, \text{Å} = 5 \times 10^{-7} \, \text{m} \) (wavelength),
- \( D = 1 \, \text{m} \) (distance between the slits and screen),
- \( d = 1 \, \text{mm} = 1 \times 10^{-3} \, \text{m} \) (slit separation).
Step 2: Calculating the fringe shift.
The fringe width is \( \beta = \frac{(5 \times 10^{-7}) \times 1}{1 \times 10^{-3}} = 5 \times 10^{-4} \, \text{m} \).
Now, if the fringe width changes by \( 12.5 \times 10^{-5} \, \text{m} \), the screen must be moved by:
\[
\text{Change in distance} = \frac{12.5 \times 10^{-5}}{5 \times 10^{-4}} \times 1 \, \text{m} = 0.25 \, \text{m} = 25 \, \text{cm}
\]
Thus, the screen should be moved by 25 cm, corresponding to option (A).