Question:

In a $\triangle$ ABC w ith fixed base BC, the vertex A moves such that cos B + cos C = 4 $ sin^2 \frac{A}{2}$. If a, b and c denote th e lengths of th e sides of th e triangle opposite to the angles A, B and C respectively, then

Updated On: Jun 14, 2022
  • b + c - 4a
  • b + c - 2a
  • locus of point A is an ellipse
  • locus of point A is a pair of straight line
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Given, cos B + cos C = 4 $ sin^2 \frac{A}{2} $
$\Rightarrow 2 \, cos \, \bigg( \frac{ B + C }{2} \bigg) \, cos \, \bigg( \frac{ B - C }{2} \bigg) = 4 \, sin^2 \frac{A}{2} $
$\Rightarrow 2 \, sin \, \frac{A}{2} \bigg [ cos \bigg( \frac{ B - C }{2} \bigg) - 2 \, sin \frac{A}{2} \bigg ] = 0 $
$\Rightarrow cos \bigg( \frac{ B - C }{2} \bigg) - 2 \, cos \bigg( \frac{ B + C }{2} \bigg) = 0 $
as sin $ \frac{A}{2} \ne 0 $
$\Rightarrow - cos \frac{ B }{2} \, cos \, \frac{C }{2} + 3 sin \, \frac{B}{2} \, sin \, \frac{C }{2} = 0 $
$\Rightarrow tan \frac{B }{2} tan \, \frac{C}{2} = \frac{1}{3} $
$\Rightarrow \sqrt{ \frac{ ( s - a) \, (s - c) }{ s \, (s - b) } . \frac{( s - b ) \, (s - a)}{ s \, (s - c)}} \frac{1}{3} $
$\Rightarrow \frac{s - a}{s} \frac{1}{3} $
$\Rightarrow 2s = 3a $
$\Rightarrow b + c = 2a $.
$\therefore$ Locus of A is an ellipse
Was this answer helpful?
0
0

Questions Asked in JEE Advanced exam

View More Questions

Concepts Used:

Trigonometric Equations

Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles. For example, cos2 x + 5 sin x = 0 is a trigonometric equation. All possible values which satisfy the given trigonometric equation are called solutions of the given trigonometric equation.

A list of trigonometric equations and their solutions are given below: 

Trigonometrical equationsGeneral Solutions
sin θ = 0θ = nπ
cos θ = 0θ = (nπ + π/2)
cos θ = 0θ = nπ
sin θ = 1θ = (2nπ + π/2) = (4n+1) π/2
cos θ = 1θ = 2nπ
sin θ = sin αθ = nπ + (-1)n α, where α ∈ [-π/2, π/2]
cos θ = cos αθ = 2nπ ± α, where α ∈ (0, π]
tan θ = tan αθ = nπ + α, where α ∈ (-π/2, π/2]
sin 2θ = sin 2αθ = nπ ± α
cos 2θ = cos 2αθ = nπ ± α
tan 2θ = tan 2αθ = nπ ± α