Step 1: Express numerator and denominator in polar form.
Numerator:
\[
1-i\sqrt{3}
\]
Its modulus:
\[
\sqrt{1^2+(\sqrt{3})^2}=\sqrt{4}=2
\]
Argument:
\[
\tan^{-1}\left(\frac{-\sqrt{3}}{1}\right)=-60^\circ
\]
So:
\[
1-i\sqrt{3} = 2(\cos(-60^\circ)+i\sin(-60^\circ))
\]
Denominator:
\[
1+i\sqrt{3}
\]
Modulus = 2, argument = \(+60^\circ\).
\[
1+i\sqrt{3} = 2(\cos 60^\circ+i\sin 60^\circ)
\]
Step 2: Divide in polar form.
\[
z=\frac{2(\cos(-60^\circ)+i\sin(-60^\circ))}{2(\cos 60^\circ+i\sin 60^\circ)}
\]
\[
z = \cos(-120^\circ)+i\sin(-120^\circ)
\]
Step 3: Convert \(-120^\circ\) to positive coterminal angle.
\[
-120^\circ = 240^\circ
\]
Final Answer:
\[
\boxed{240^\circ}
\]