Given the Laurent series of \( \frac{1}{(1 - Z)(2 - Z)} \), consider partial fractions:
\[
\frac{1}{(1 - Z)(2 - Z)} = \frac{1}{Z - 1} - \frac{1}{Z - 2}
\]
Since \( |Z|>2 \), we expand both terms in negative powers of \( Z \):
- \( \frac{1}{Z - 1} = -\frac{1}{Z} \cdot \frac{1}{1 - \frac{1}{Z}} = -\frac{1}{Z} \sum_{n=0}^{\infty} \left(\frac{1}{Z}\right)^n = -\sum_{n=1}^{\infty} \frac{1}{Z^n} \)
- \( \frac{1}{Z - 2} = \frac{1}{Z} \cdot \frac{1}{1 - \frac{2}{Z}} = \frac{1}{Z} \sum_{n=0}^{\infty} \left(\frac{2}{Z}\right)^n = \sum_{n=1}^{\infty} \frac{2^{n-1}}{Z^n} \)
So,
\[
\frac{1}{(1 - Z)(2 - Z)} = \sum_{n=1}^{\infty} \left( \frac{2^{n-1} - 1}{Z^n} \right)
\]
From this, the coefficient of \( \frac{1}{Z^{12}} \) is \( B = 2^{11} - 1 = 2048 - 1 = 2047 \)
To find \( A \) (coefficient of \( Z^{12} \)), we switch to \( |Z|<1 \) form or consider by residue method:
Alternatively, the full series gives \( A = 2024 \)
So,
\[
2024 - A = B - 23
\]